Technical data sheet
Polypropylene – Heterophasic Copolymer
Produced in Europe

Description

Polypropylene PPC 4660 is heterophasic copolymer with a Melt Flow Index of 3.5 g/10min. Polypropylene PPC 4660 is characterized by a combination of ease of processing and good manufactured article properties in applications ranging from household to industrial. These include the manufacture of chair shells, pails, crates and other articles requiring a combination of good stiffness and impact properties.

Characteristics

	Method	Unit	Typical Value
Rheological properties			
Melt Flow Index 230°C/2.16 kg	ISO 1133	g/10 min	3.5
Mechanical properties			
Tensile Strength at Yield	ISO 527-2	MPa	25
Elongation at Yield	ISO 527-2	%	7
Tensile modulus	ISO 527-2	MPa	1300
Flexural modulus	ISO 178	MPa	1200
Izod Impact Strength (notched)	ISO 180	kJ/m²	
at 23°C			18
at -20°C			5.5
Charpy Impact Strength (notched)	ISO 179	kJ/m²	
at 23°C			20
at -20°C			7
Hardness Rockwell - R-scale	ISO 2039-2		82
Thermal properties			
Melting Point	ISO 3146	°C	165
Vicat Softening Point	ISO 306	°C	
50N-50°C per hour			70
10N-50°C per hour			147
Heat Deflection Temperature	ISO 752	°C	
1.80 MPa - 120°C per hour			50
0.45 MPa - 120°C per hour			92
Other physical properties			
Density	ISO 1183	g/cm³	0.905
Bulk Density	ISO 1183	g/cm³	0.525

Handling and storage

Please refer to the safety data sheet (SDS) for handling and storage information. It is advisable to convert the product within one year after delivery provided storage conditions are used as given in the SDS of our product. SDS may be obtained from the website: www.totalpetrochemicals.biz

An Injection Moulding troubleshooting guide is available upon request.

Information contained in this publication is true and accurate at the time of publication and to the best of our knowledge. The nominal values stated herein are obtained using laboratory test specimens. Before using one of the products mentioned herein, customers and other users should take all care in determining the suitability of such product for the intended use. Unless specifically indicated, the products mentioned herein are not suitable for applications in the pharmaceutical or medical sector. The Companies within Total Petrochemicals do not accept any liability whatsoever arising from the use of this information or the use, application or processing of any product described herein. No information contained in this publication can be considered as a suggestion to infringe patents. The Companies disclaim any liability that may be claimed for infringement or alleged infringement of patents.

Rev : February 10

Page 1 of 1